Capacitive Method
A third method is Doriano Brogioli's capacitive method, which is relatively new and has so far only been tested on lab scale. With this method energy can be extracted out of the mixing of saline water and freshwater by cyclically charging up electrodes in contact with saline water, followed by a discharge in freshwater. Since the amount of electrical energy which is needed during the charging step is less than one gets out during the discharge step, each completed cycle effectively produces energy. An intuitive explanation of this effect is that the great number of ions in the saline water efficiently neutralizes the charge on each electrode by forming a thin layer of opposite charge very close to the electrode surface, known as an electric double layer. Therefore, the voltage over the electrodes remains low during the charge step and charging is relatively easy. In between the charge and discharge step, the electrodes are brought in contact with freshwater. After this, there are less ions available to neutralize the charge on each electrode such that the voltage over the electrodes increases. The discharge step which follows is therefore able to deliver a relatively high amount of energy. A physical explanation is that on an electrically charged capacitor, there is a mutually attractive electric force between the electric charge on the electrode, and the ionic charge in the liquid. In order to pull ions away from the charged electrode, osmotic pressure must do work. This work done increases the electrical potential energy in the capacitor. An electronic explanation is that capacitance is a function of ion density. By introducing a salinity gradient and allowing some of the ions to diffuse out of the capacitor, this reduces the capacitance, and so the voltage must increase, since the voltage equals the ratio of charge to capacitance.